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Abstract One-dimensional thermal wave transport in multilayered systems with
an interface thermal resistance is studied under the framework of the Cattaneo–
Vernotte hyperbolic heat conduction model, considering modulated heat excitation
under Dirichlet and Neumann boundary conditions. For a single semi-infinite layer,
analytical formulas useful in the measurement of its thermal relaxation time as well
as additional thermal properties are presented. For a composite-layered system, in the
thermally thin regime, with the Dirichlet boundary condition, the well known effective
thermal resistance formula is obtained, while for the Neumann problem, only the heat
capacity identity is found. In contrast, in the thermally thick case, an analytical expres-
sion for both Dirichlet and Neumann conditions is obtained for the effective thermal
diffusivity of the whole system in terms of the thermal properties of the individual lay-
ers and their interface thermal resistance. The limits of applicability of this equation,
in the thermally thick regime, are shown to provide useful and simple results in the
characterization of layered systems and that they can be reduced to the results obtained
using the Fourier approach. The role of the thermal relaxation time, the interface ther-
mal resistance, and the implications of these results in the possibility of enhancement
in heat transport are discussed.

Keywords Effective thermal properties · Hyperbolic heat conduction ·
Layered system · Thermal properties determination · Thermal resistance

J. Ordóñez-Miranda · J. J. Alvarado-Gil (B)
Applied Physics Department, Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad
Mérida, Carretera Antigua a Progreso km. 6, A.P. 73 Cordemex, 97310 Mérida, Yucatán, México
e-mail: jjag@mda.cinvestav.mx; jjag09@yahoo.com

J. Ordóñez-Miranda
e-mail: eordonez@mda.cinvestav.mx

123



Int J Thermophys (2010) 31:900–925 901

1 Introduction

Effective models are useful tools in the understanding and practical predictions of the
physical properties of heterogeneous materials [1]. In the case of heat transfer, those
models are usually based on Fourier’s law. This equation is supported by an impres-
sive quantity of useful and successful results that show very good agreement with
experimental data for most of the analyzed experimental conditions [2,3]. However,
in recent experimental results on a variety of physical systems including nanofluids,
different research groups have reported thermal conductivities much higher than the
values expected from those previously observed and predicted by conventional mean
field models based on Fourier’s law. These results indicate that the validity of the basic
heat transport equations must be revised [4–6].

It has been shown that the Fourier heat diffusion law predicts an infinite velocity
for heat propagation, in such a way that a temperature change in any part of the mate-
rial would result in an instantaneous perturbation at each point of the sample. This
inconsistency has been studied by different researchers; comprehensive reviews con-
taining different approaches to surmount Fourier equation limitations can be found in
the literature [7,8]. The origin of this fundamental problem is due to the fact that the
Fourier’s law establishes explicitly that, when a temperature gradient at time t is
imposed, the heat flux starts instantaneously at the same time t . Considering that heat
transport is due to microscopic motion and collisions of particles, atoms, and mole-
cules, it is straightforward to conclude that the Fourier condition on the velocity of
heat transport cannot be sustained [7,9,10].

One of the simplest approaches to solve this problem was given by Cattaneo [11]
and independently by Vernotte [12], who suggested to incorporate the finite propaga-
tion speed of heat while retaining the basic nature of Fourier’s law, modifying the heat
flux equation in the form,

q(x, t + τ) = −k
∂T (x, t)

∂x
, (1)

where x is the spatial coordinate, t is the time, q (W · m−2) is the heat flux, T (K)
is the absolute temperature, k (W · m−1 · K−1) is the thermal conductivity, and τ (s)
is the thermal property of the medium known as the thermal relaxation time, which
represents the time necessary for the initiation of the heat flux after a temperature
gradient has been imposed at the boundary of the medium. Equation 1 establishes
that the heat flux does not start instantaneously, but rather grows gradually with the
thermal relaxation time after the application of the temperature gradient. Conversely,
τ represents the time necessary for the disappearance of the heat flux after the removal
of the temperature gradient [10,13]. In this way Eq. 1 establishes explicitly that the
temperature gradient always precedes the heat flux. A generalization of Fourier’s
law and of Eq. 1 has also been proposed by Tzou [8,14,15], who establishes that
either the temperature gradient may precede the heat flux or the heat flux may pre-
cede the temperature gradient, by incorporating one time delay in the heat flux and
one in the temperature gradient. These models have been shown to be admissible by
the second law of extended irreversible thermodynamics [8] and by the Boltzmann
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transport equation [16]. In order to establish the impact of the possible generaliza-
tions of Fourier’s law on the concepts and values of effective thermal properties, it
is of main importance to develop adequate methodologies and equations using the
Cattaneo–Vernotte (CV) approach. The predictions of the effective thermal properties
by more realistic models than the CV model should be in agreement with the results
predicted by the hyperbolic model, in the appropriate limit.

Assuming that the thermal relaxation time is much shorter that the typical response
time in a transient process (τ � t), Eq. 1 can be approximated by a first-order Taylor
series expansion, as follows:

q (x, t) + τ
∂q (x, t)

∂t
= −k

∂T (x, t)

∂x
, (2)

whose solution is given by

q (x, t) = − k

τ
e−t/τ

t∫

−∞
eη/τ ∂T (x, η)

∂x
dη. (3)

In this way, Eq. 3 establishes that the heat flux q(x, t) at a certain time t depends on
the history of the temperature gradient established in the whole time interval from
−∞ to t . This indicates that the heat flux has thermal memory, a consequence of the
finite value of the thermal relaxation time [17]. In this way, Eq. 3 predicts a dependence
of the time path of the temperature gradient rather than an instantaneous response pre-
dicted by the Fourier law.

In order to uncouple the variables q and T , Eq. 2 has to be combined with the
energy conservation equation established at time instant t , given by [2]

∂q(x, t)

∂x
+ ρc

∂T (x, t)

∂t
= S(x, t), (4)

where ρ (kg · m−3) is the density, c (J · kg−1 · K−1) is the specific heat of the medium,
and the source term S (W · m−3) represents the rate per unit volume at which the heat
flux is generated. Combining Eqs. 2 and 4, and assuming constant thermal properties
in such a way that they are independent of the position, the hyperbolic heat conduction
equation is obtained [7,18];

∂2T (x, t)

∂x2 − 1

α

∂T (x, t)

∂t
− τ

α

∂2T (x, t)

∂t2 = −1

k

(
S(x, t) + τ

∂S(x, t)

∂t

)
, (5)

where α = k/(ρc) is the thermal diffusivity of the medium of concern. On the left-
hand side of Eq. 5, the second-order time derivative term indicates that heat propagates
as a wave with a characteristic speed

√
α/τ and the first-order time derivative term

corresponds to a diffusive process, which is damping spatially the heat wave. Notice
that Eq. 5 reduces to the parabolic heat conduction equation (based on Fourier’s law)
for τ → 0 or in a steady-state condition ∂ �J (�x, t)/∂t = 0. In this way the CV equation
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incorporates the finite speed of heat propagation while retaining the basic nature of
Fourier’s law.

The applicability of the CV equation has been widely discussed [6,7,19,20]. It is
clear that a physical system would follow the predicted hyperbolic behavior if the time
scale of the heat transport phenomenon analyzed is of the order of the thermal relax-
ation time. This quantity is associated with the average communication time among
the collisions of electrons and phonons, and its reported values for metals, supercon-
ductors, and semiconductors are of the order of microseconds (10−6 s) to picoseconds
(10−12 s) [10]. These small values of the thermal relaxation time indicate that its effects
will not be significant if the physical time scales are of the order of microseconds or
larger. In these situations Fourier equation provides an adequate approach. However,
in modern applications such as in analysis and processing of materials using ultrashort
laser pulses and high speed electronic devices, the finite value of the relaxation time
is necessary to be considered [6,17,19–21].

One of the most interesting questions is the applicability of the hyperbolic formalism
in what is known as materials with a non-homogeneous inner structure, such as bio-
logical tissues, granular materials, and nanofluids. For these systems, several authors
have claimed that they have measured hyperbolic effects with thermal relaxation times
of the order of seconds [6,18,20,22]. It is expected that the CV equation could provide
effective thermal properties, due to the fact that in a hyperbolic model, heat transport
behaves more wave-like than in the traditional Fourier parabolic approach [7].

Layered structures are among the best studied non-homogenous systems and con-
stitute one of the basic configurations for the analysis and development of effective
thermal properties models [1]. These systems have been studied in stationary and in
dynamic heat transfer conditions [23–28]. By using the CV equation, Khadrawi et al.
[25] and Lor and Chu [29] have studied the thermal behavior of a two-layer system with
perfect and imperfect thermal contact. These authors have shown that the interface
thermal resistance as well as the thermal relaxation time play a determinant role in the
thermal response of the system. In addition, the thermal behavior of a layered system
under the framework of the dual-phase lagging model of heat conduction [8,18], has
also been investigated by various research groups [8,18,30–34]. Recently, Ramadan
et al. [31–34] have studied the thermal behavior of the layers in the absence and pres-
ence of the interface thermal resistance. They have found that the effect of the thermal
contact between the layers is very important in the transient process of heat transfer.

When a material is excited by a modulated heat source, a train of thermal waves
is generated, with its transport determined by the thermal properties, the boundary
conditions, as well as the geometry of the physical system. This area of research has
provided useful and meaningful results for interpretation of heat diffusion and trans-
port using Fourier’s law [26,28,35–37]. In this case it has been shown that, depending
on the thermal wave penetration inside the material, the effective thermal properties
could show a complex behavior influenced by the modulation frequency of the heat-
ing source [26,28]. The generalization of this approach for two-layer systems under
the hyperbolic heat transport equation has been studied [38]; however, the role of the
interface thermal resistance as well as the thermal relaxation time on the effective
thermal properties has not been fully explored.
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In this work, it will be shown that the values of the effective thermal diffusivity
in a layered system, in the scheme of hyperbolic heat transport, depend crucially not
only on the traditional thermal properties of the layers such as thermal diffusivity,
thermal conductivity, thermal effusivity, and thermal interface resistance, but also on
the thermal relaxation time. In addition, it provided a straightforward methodology
to evaluate the value of the effective thermal relaxation time and its role in different
modulation frequency ranges.

2 Mathematical Formulation and Solutions

Let us consider the configuration shown in Fig. 1, in which the system is excited
externally at the surface x = 0 by either a modulated temperature T (x = 0, t) or heat
source S(x = 0, t) at frequency f of the form [39,40],

T (x = 0, t) = �(1 + cos(ωt)) = Re
[
�
(

1 + eiωt
)]

, (6a)

S(x = 0, t) = Q (1 + cos(ωt)) = Re
[

Q
(

1 + eiωt
)]

, (6b)

where ω = 2π f , Re(ξ) is the real part of and � (K) and Q (W · m−3) are two positive
constants. For any of these thermal excitations, the temperature at any point of the
sample is given by

T (x, t) = Tamb + Tdc(x) + Tac(x, t), (7)

where Tamb corresponds to the ambient temperature, Tdc(x) and Tac(x, t) =
Re

[
θ(x)eiωt

]
are the stationary raising and periodic components of the temperature;

these last two terms are due to the first and second terms of the corresponding thermal
excitations, respectively. From now on, the operator Re() will be omitted, taking into

x
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Fig. 1 Schematic diagram of the studied layered systems: (a) semi-infinite one-dimensional sample of
thermal conductivity k0, thermal diffusivity α0, and relaxation time τ0; (b) a layer of thermal conductivity
k1, thermal diffusivity α1, relaxation time τ1, and thickness l1 is added to the semi-infinite system of (a); and
(c) an additional layer of thermal conductivity k2, thermal diffusivity α2, relaxation time τ2, and thickness
l2 is inserted between the two layers of the previous system
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account the convention that the real part of the expressions of the temperature must
be taken to obtain physical quantities. Our attention will be focused on the spatial
component [θ (x)] of the oscillatory part of the temperature, due to the fact that it is
the quantity of interest in lock-in and similar detection techniques.

Inserting Eq. 7 into Eq. 5 and considering that there are no any internal heat sources,
then for x ≥ 0, the general solution of Eq. 5 for θ (x) is given by

θ (x) = Bepx + Ce−px , (8)

where B and C are two constants that depend on the boundary conditions at x = 0, l1, l
of the corresponding problem and p is given by

p =
√

iω

α

√
1 + iωτ = χ + iχ−1

μ
, (9a)

μ =
√

2α

ω
=
√

α

π f
, (9b)

χ =
√√

1 + (ωτ)2 − ωτ. (9c)

It is important to observe that for low frequencies (ωτ � 1) the parameter χ tends
to unity and the parameter p approaches its classical value pc = (1 + i)/μ [16,17].
On the other hand, for high frequencies (ωτ � 1), the parameter χ tends to 1/

√
2ωτ

and the parameter p → (1 + i2ωτ)/2
√

ατ , whose real part is independent of the
modulation frequency and, therefore, it predicts that the hyperbolic thermal waves
are able to travel larger distances than the parabolic ones predicted by Fourier’s law.
Notice that, in general, the hyperbolic thermal conduction length, μh, analogous to
the parabolic thermal diffusion length μ, is given by

μh = μ

χ
, (10)

This corresponds to the distance at which the amplitude of the hyperbolic thermal wave
falls to a value e−1 ≈ 0.368 of its size at the surface (x = 0). In Fig. 2, the behavior of
the hyperbolic thermal conduction length as functions of the modulation frequency is
shown for three different values of the thermal relaxation time. The parabolic thermal
diffusion length is shown in the same figure by a dashed line.

Figure 2 shows that when the frequency decreases (ωτ � 1), the thermal conduc-
tion length reduces to the one predicted by the parabolic model. In contrast, for high
frequencies (ωτ � 1), the parabolic thermal diffusion length reduces to zero while the
hyperbolic thermal conduction length tends to a value

(=2
√

ατ
)

independent of the
modulation frequency. For a constant value of the thermal diffusivity, this last value is
larger when the thermal relaxation time increases. Since the hyperbolic thermal con-
duction length for any frequency is larger than the parabolic thermal diffusion length,
the hyperbolic thermal waves are less attenuated than the parabolic ones.
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Fig. 2 Thermal conduction length as a function of the modulation frequency. The dashed line corresponds
to the parabolic model and the solid lines to the hyperbolic approach for three values of the thermal relaxation
time: τ1 = 10−8 s, τ2 = 10−9 s, and τ3 = 10−10 s; and taking α = 1 × 10−4 m2 · s−1

Considering that there is a thermal resistance R (m2 · K · W−1) at the interface of
the layers [41,42], the boundary conditions obtained from the usual requirement of
the temperature discontinuity and heat flux continuity at the interfaces x = l1, l are
given by

θ(x−) − θ(x+) = R±k
(
x+)

1 + iωτ+
dθ
(
x+)

dx
, (11a)

k(x−)

1 + iωτ−
dθ(x−)

dx
= k

(
x+)

1 + iωτ+
dθ
(
x+)

dx
, (11b)

where the superscripts “+” and “−” indicate that the limit x → l1 (x → l) is taken
from the right and left of the point x = l1 (x = l), respectively. The form of Eqs. 11a
and 11b may be derived using Eqs. 2 or 3. In what follows, the explicit solutions given
by the two types of excitations represented in Eqs. 6a, 6b are obtained.

2.1 Dirichlet Problem

In this case, according to Eq. 6a, the following boundary condition is considered:

θ(x = 0) = �, (12)

2.1.1 Semi-Infinite Layer (Fig. 1a)

In this case the physically acceptable solution goes to zero for large distances
[θ (x → ∞) → 0] and according to Eqs. 8 and 12 is given by
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θ(x) = �e−p0x , (13)

where p0 is defined by Eqs. 9a–9c for the thermal properties of the semi-infinite layer
(layer 0) and x ≥ 0.

2.1.2 Semi-Infinite Layer in Contact with the Layer of Thickness l1 (Fig. 1b)

Using Eqs. 8, 11a, 11b, and 12, it is obtained that the solution for the spatial part of
the thermal wave and for x ≥ l1 is given by

θ(x) = 2�

(1 + λ01 + R10λ0)ep1l1 + (1 − λ01 + R10λ0)e−p1l1
e−p0(x−l1), (14)

where p1 is defined by Eqs. 9a–9c for the thermal properties of the first layer (layer
1), R10 is the interface thermal resistance between layers 1 and 0, and λ01 = λ0/λ1
with

λ j = ε j
√

iω√
1 + iωτ j

, (15)

and with ε j = k j/
√

α j being the thermal effusivity of the layer j = 0, 1. This thermal
property measures the ability of the materials to exchange heat with its surroundings
[43].

2.2 Two Finite Layers in Contact with a Semi-Infinite Layer (Fig. 1c)

In this case for x ≥ l, the solution obtained using Eqs. 8, 11a, 11b, and 12 is

θ(x) = 4�η1η2

D
e−p0(x−l), (16)

where

D = (η2
1 + 1)ξ1 + λ01(η

2
1 − 1)ξ2, (17a)

ξ1 = (η2
2 + 1)[1 + (R12 + R20)λ0] + (η2

2 − 1)[λ02 + R12λ2(1 + R20λ0)],
(17b)

ξ2 = (η2
2 + 1) + (η2

2 − 1)(λ20 + R20λ2), (17c)

η j = eq j l j , j = 1, 2. (17d)

λ j = ε j
√

iω√
1 + iωτ j

, j = 0, 1, 2. (17e)

λ jn = λ j/λn , j, n = 0, 1, 2. (17f)
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2.3 Neumann Problem

Considering that the optically opaque surface [39] of a material is uniformly illumi-
nated by a laser light beam of periodically modulated intensity, the heat source is given

by [39,40]: I0 [1 + cos(ωt)]/2 = Re

[
I0

(
1 + eiωt

)/
2

]
,where I0 = Fη(1 − R)I ,

with F a parameter determined by the optical, thermal, and geometric properties of
the first layer, η is the efficiency at which the absorbed light is converted into heat,R
is the reflection coefficient of the surface at x = 0, and I (W · m−2) is the intensity of
the light beam. Considering that the sample is illuminated with a fixed light source, the
factor I0 can be taken as nearly constant and independent of the modulation frequency
as is usually assumed in similar problems [37,39]. The external boundary condition
in this case has the following form:

− k

1 + iωτ

dθ (x)

dx

∣∣∣∣
x=0

= I0

2
. (18)

Using Eqs. 8, 11a, 11b, and 18, the following results are obtained:

2.3.1 Semi-Infinite Layer (Fig. 1a)

In this case for x ≥ 0, the temperature is given by

θ(x) = I0

2ε0

√
1 + iωτ0√

iω
e−p0x , (19)

where all parameters have been defined previously.

2.3.2 Semi-Infinite Layer in Contact with the Layer of Thickness l1 (Fig. 1b)

In this case for x ≥ l1, it is obtained that

θ(x) = I0

2ε1

√
1 + iωτ1√

iω

× 1

(1 + λ01 + R10λ0)ep1l1 − (1 − λ01 + R10λ0)e−p1l1
e−p0(x−l1), (20)

where all parameters have been defined previously.

2.3.3 Two Finite Layers in Contact with a Semi-Infinite Layer (Fig. 1c)

It can be shown that for x ≥ l, the temperature is given by

θ(x) = I0

2ε1

√
1 + iωτ1√

iω

4η1η2

N
e−p0(x−l), (21)
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where

N = (η2
1 − 1)ξ1 + λ01(η

2
1 + 1)ξ2, (22)

and all the other terms have been previously defined.

3 Results

In this section, useful formulas to determine the thermal properties, under the frame-
work of the CV model of heat conduction, are obtained and analyzed.

3.1 Thermal Properties of a Semi-Infinite Layer

3.1.1 Dirichlet Problem

After expressing θ (x) as a complex function in its polar form, both its amplitude A
and phase φ can be obtained, which for the case of the semi-infinite layer (Eq. 12) are

A = �e
−√

π f
xχ0√

α0 , (23a)

φ = −√π f
xχ−1

0√
α0

, (23b)

The behavior of the normalized amplitude and phase as functions of the modulation
frequency are shown in Fig. 3a and b, respectively; for two values of the thermal
relaxation time (τ0 = 1×10−8 s, 1×10−9 s), which are characteristic of semiconduc-
tors [10]. It is assumed that the measurement is performed at x = 2×10−6 m and
that the thermal diffusivity of the semi-infinite layer is α = 1×10−4 m2 · s−1. The
corresponding spectra, predicted by the parabolic model (τ0 = 0), are shown in the
same figure by dashed lines.

In Fig. 3a and b, it is observed that when the frequency decreases (ωτ0 � 1) the
spectrum predicted by the hyperbolic model reduces to the one predicted by the para-
bolic model. In contrast, for high frequencies (ωτ0 � 1), the behavior predicted by the
parabolic model differs remarkably from the hyperbolic one. In fact, for sufficiently
high frequencies, the normalized amplitude predicted by the parabolic model falls to
zero while the one predicted by the hyperbolic model tends to a frequency-independent
value, which is larger for larger thermal relaxation times.

By combining Eqs. 23a and 23b, it can be shown that

α0 = π f x2

φ ln(A/�)
, (24)

τ0 = a−1 − a

4π f
, (25)
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Fig. 3 (a) Normalized amplitude and (b) phase of the temperature as functions of the modulation
frequency, for the Dirichlet problem and taking x = 2 × 10−6 m and α0 = 10−4 m2 · s−1. The dashed
line corresponds to the parabolic model and the solid lines to the hyperbolic equation, for two values of
τ0 : τ01 = 1 × 10−8 s, τ02 = 1 × 10−9 s

where a = ln(A/�)/φ is smaller than unity, because the parameter χ is also smaller
than unity. Equations 24 and 25 agree with the results obtained by Roetzel et al. [19]
for the hyperbolic approach. In this way the thermal diffusivity and thermal relaxation
time can be determined simultaneously by recording the amplitude and phase at some
modulation frequency f and at a certain position x . Notice that in the parabolic model,
a = 1 and therefore τ0 = 0.
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3.1.2 Neumann Problem

The amplitude A and phase φ of the thermal signal expressed in Eq. 19 are given by

A = I0

2ε0
√

2π f
4
√

1 + (2π f τ0)2e
−√

π f
xχ0√

α0 , (26a)

φ + π

4
= −√π f

xχ−1
0√
α0

+ 1

2
arctan(2π f τ0), (26b)

The behavior of the normalized amplitude and phase as functions of the modulation
frequency are shown in Fig. 4a and b, respectively, for the same data used in Fig. 3a.
The corresponding spectra predicted by the parabolic model (τ0 = 0) are shown in
the same figure by dashed lines. In Fig. 4a and b, it can be noticed that the spectra
predicted by the hyperbolic and parabolic models are similar to those presented in
Fig. 3a and b, respectively.

If the amplitude A and the phase φ are measured in an experiment, by performing a
fitting procedure by means of Eq. 26b, both the thermal diffusivity (α0) and the ther-
mal relaxation time (τ0) can be determined. Then using Eq. 26a, the thermal effusivity
(ε0) can also be obtained. Finally, the thermal conductivity of the semi-infinite layer
is obtained using the relation, k0 = ε0

√
α0.

It is important to note that in the Neumann problem we have b ≡ (ln A)′/φ′ = χ2
0 ,

where the prime indicates a derivative with respect to x . After solving this equation
for the thermal relaxation time, the following equation is obtained:

τ0 = b−1 − b

4π f
, (27)

which is analogous to Eq. 25 in the Dirichlet problem and can also be used to determine
τ0.

It is important to observe that under the framework of the hyperbolic model, in
the Dirichlet problem only the thermal relaxation time and thermal diffusivity can be
determined, simultaneously; however, in the Neumann problem, in addition to these
thermal properties, the thermal effusivity and conductivity can also be observed. This
fact represents a remarkable advantage of the Neumann problem with respect to the
Dirichlet problem.

3.2 Effective Thermal Properties of a Layered System

The methodology presented in Sect. 3.1 can be useful to determine the thermal prop-
erties of a given material in the form of a sufficiently thick layer. However, when that
layer is in thermal contact with other layers of different thermal properties (see Fig. 1c),
as usually happens in technological applications, it is more convenient to determine
effective thermal properties. In this case it is assumed that the layered system (Fig. 1c)
can be understood as a one-layer system (Fig. 1b). This subsection is dedicated to

123



912 Int J Thermophys (2010) 31:900–925

10
7

10
8

10
9

0.0

3.0x10
-5

6.0x10
-5

9.0x10
-5

N
or

m
al

iz
ed

am
pl

it
ud

e
2ε

0A
/I 0,s

1/
2

Frequency f, Hz

τ
01

τ
02

10
6

10
7

10
8

-360

-270

-180

-90

P
ha

se
φ,

°

Frequency f, Hz

τ
01

τ
02

(a)

(b)

Fig. 4 (a) Normalized amplitude and (b) phase of the temperature as functions of the modulation frequency,
for Neumann problem, taking x = 2 × 10−6 m and α0 = 10−4 m2 · s−1. The dashed line corresponds
to the parabolic model and the solid lines to the hyperbolic one for two values of τ0: τ01 = 1 × 10−8 s,
τ02 = 1 × 10−9 s

obtain useful effective thermal properties for determining the thermal properties of a
finite layer (see Fig. 1c) when the thermal properties of the other layers are known.

3.2.1 Dirichlet Problem

Since p1l1 =
(
χ1 + iχ−1

1

)
l1/μ1, then

∣∣∣e−q1l1
∣∣∣ = e

− χ1l1
μ1 . (28)
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From the analysis of the size of the quantity χ1l1/μ1 and in analogy with traditional
thermal wave phenomena [44], an extension of the usual concept of the thermal diffu-
sion length for parabolic thermal waves μ1 to a new quantity μ1/χ1 (the hyperbolic
thermal conduction length) is necessary. In this way, the solutions given by Eq. 14 can
be classified as thermally thin (for a layer such that χ1l1/μ1 � 1) and thermally thick
(for a layer such that χ1l1/μ1 � 1). This will be crucial in the comprehension and
analyses of hyperbolic heat transport phenomena, providing useful and convenient
approximations of Eq. 14.

• For a thermally thin layer (χ−1
1 l1/μ1 � 1, which implies that χ1l1/μ1 � 1,

because χ1 ≤ 1), Eq. 14 takes the form,

θ(x) ≈ �e
−λ0

(
p1l1
λ1

+R10

)
e−p0(x−l1). (29)

• In the case of a thermally thick layer (χ1l1/μ1 � 1,which implies that χ−1
1 l1/μ1 �

1, because χ−1
1

≥ 1), Eq. 14 reduces to

θ(x) ≈ �

(
2

1 + λ01 + R10λ0

)
e−p1l1e−p0(x−l1), (30)

from which is obtained that θ (l1) ≈ � [2/ (1 + λ01 + R10λ0)] e−q1l1 . Comparing
this equation with Eq. 13, for a semi-infinite medium, it can be observed that they
are similar and only differ by the interface factor 2/ (1 + λ01 + R10λ0) which is a
consequence of the insertion of layer 1 in contact with the semi-infinite layer.

In analogy with the previous system, the approximations of Eq. 16 when both layers
are thermally thin or thermally thick can be made as follows:

• For thermally thin layers (χ−1
j l j

/
μ j � 1, j = 1, 2), Eq. 16 can be written as

θ(x) ≈ �e
−λ0

(
p1l1
λ1

+ p2l2
λ2

+R12+R20

)
e−p0(x−l). (31)

If it is considered that the two finite layers of thicknesses l1 and l2 behave as if they were
a single one (the effective layer) of thickness l = l1 + l2 , effective thermal conduc-
tivity k, and effective thermal relaxation time τ , according to Eq. 29, the temperature
in this layer can be written in the form,

θ(x) ≈ �e
−λ0

(
pl
λ

+R20

)
e−p0(x−l). (32)

Comparing Eqs. 31 and 32, it is obtained that

l

k
= l1

k1
+ l2

k2
+ R12, (33a)

τ
l

k
= τ1

l1
k1

+ τ2
l2
k2

. (33b)
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Equation 33a has been previously obtained by Dramicanin et al. [24]; in the absence
of an interface thermal resistance, it reduces to the formula determined by Lucio et al.
[26], which is widely used in thermal characterization [26,27,36] under the framework
of the parabolic model of heat conduction. Here, it is proved that Eq. 41 is not only
true in the parabolic model but also in the hyperbolic model and is independent of the
relaxation time of the component layers.

After dividing Eq. 33b by Eq. 33a, the following equation is obtained:

τ = τ1
l1
k1

+ τ2
l2
k2

l1
k1

+ l2
k2

+ R12
, (34)

which establishes that the effective thermal relaxation time is a weighted average of
the thermal relaxation times of each layer, with the thermal resistances as the weights.

Solving the condition for thermally thin layers (χ−1
j l j/μ j � 1, j = 1, 2), it can

be shown that Eqs. 33a and 33b are valid for frequencies that satisfy

ω � ωcj√
1 + 2ωcjτ j

, (35)

where ωc j = 2α j/l2
j is the classical cutoff frequency of the layer j = 1, 2 [3,13].

• For thermally thick layers (χ j l j/μ j � 1, j = 1, 2), Eq. 16 is expressed as

θ (x) ≈ �

(
2

1 + λ02 + R20λ0

)(
2

1 + λ21 + R12λ2

)
e−(p1l1+p2l2)e−p0(x−l).

(36)

Considering again that the two finite layers of thicknesses l1and l2 behave as if they
were a single effective layer of thickness l = l1 + l2 and effective thermal diffusivity
α; according to Eq. 30 and the remark made after it, the temperature in this layer can
be written in the form,

θ(x) ≈ �

(
2

1 + λ02 + R20λ0

)
e−ple−p0(x−l). (37)

Comparing Eqs. 36 and 37, it can be shown that

χ
l√
α

= χ1
l1√
α1

+ χ2
l2√
α2

+
√

2

ω
ln

[
1

2
|1 + λ21 + R12λ2|

]
, (38)

where χ is given by Eq. 9c for the effective thermal relaxation time τ . Assuming that
the effective thermal relaxation time does not vary appreciably with the modulation
frequency, it is given by Eq. 34. It is important to remark that this effective parameter
can also be determined using the amplitude Aef and phase φef of the effective thermal
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signal expressed in Eq. 38. By defining c ≡ [ln (Aef/�)]′/(φef)
′, where the prime (′)

indicates a derivative with respect to the thickness l = l1 + l2, it is shown that

τ = c−1 − c

4π f
, (39)

In this way, the effective thermal relaxation time can be determined by measuring the
quantity c for a given frequency or a set of them, inside the range defined for thermally
thick layers (χ j l j/μ j � 1), which is defined by

ω � ωc j√
1 − 2ωc jτ j

, (40)

where ωc j = 2α j/l2
j is the classical cutoff frequency of the layer j = 1, 2 [3,13].

Notice that the denominator of Eq. 40 establishes a restriction for the thermal relaxation
time given by

τ j <
l2

j

4α j
, (41)

which indicates that for a layer of thermal diffusivity α j and thickness l j , its thermal
relaxation time has a least upper bound, proportional and very close to the thermaliza-
tion time, obtained in the analysis of thermal transients [3]. This constraint establishes
a limit for the validity of the hyperbolic model in the analysis of thermal transport that
is closely connected with the consideration of heat transport as a collective motion.

To understand the predictions of Eq. 38, different limiting cases are considered:

• If the thermal relaxation times of each layer are zero (τ1 = τ2 = τ = 0), corre-
sponding to the parabolic limit of the CV equation, Eq. 38 reduces to

l√
α

= l1√
α1

+ l2√
α2

+ 1√
π f

ln

⎡
⎣1

2

√(
1 + ε2

ε1
+ ε2 R12

√
π f

)2

+(ε2 R12)2π f

⎤
⎦.

(42)

In the absence of the interface thermal resistance, Eq. 42 was first derived by
Lucio et al. [26] for the same boundary conditions and under the framework of
the Fourier law and it also reduces to a previous one derived by Tominaga and Ito
[27] in the limit f → ∞. Lucio et al. [26] have shown that the f -dependent term is
necessary to explain previously reported experimental data [24,25], for a frequency
range in which the individual layers are thermally thick in the traditional definition(
l j/μ j � 1

)
of the Rosencwaig theory [44]. Therefore, under the framework of the

parabolic model, the Lucio et al. result is a particular case of Eq. 42, which takes into
account the interface thermal resistance between adjacent layers, and represents the
parabolic limit of Eq. 38, valid in the framework of the hyperbolic model [26].
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• For frequencies not so high, in such a way that ω jτ j/
√

1 − 2ω jτ j � ωτ j � 1 for
j = 1, 2 and performing a first-order approximation in ωτ j , it can be shown that
Eq. 38 can be written as

l(1 − π f τ)√
α

= l1(1 − π f τ1)√
α1

+ l2(1 − π f τ2)√
α2

+ 1√
π f

ln

⎡
⎣1

2

√(
1 + ε2

ε1
+ ε2 R12

√
π f

)2

+ (ε2 R12)
2 π f

⎤
⎦.

(43)

This expression is similar to that obtained in the parabolic approximation (Eq. 42);
in fact, the logarithmic part is the same. However, the effective thermal diffusiv-
ity is slightly different, due to the weak dependence on the thermal relaxation times.

• For high modulation frequencies in which the condition ωτ j � max
{
1, ω jτ j/√

1 − 2ω jτ j
}

for j = 1, 2 is fulfilled, and for an approximation of first order in(
ωτ j

)−1, the following expression is obtained from Eq. 39:

l√
ατ

= l1√
α1τ1

+ l2√
α2τ2

+ 2 ln

[
1

2

(
1 + ε2

ε1

√
τ1

τ2
+ ε2 R12√

τ2

)]
. (44)

which establishes that for very high frequencies, the hyperbolic effective thermal
diffusivity is independent of the modulation frequency, and represents the hyper-
bolic generalization of the Tominaga and Ito formula [35].

3.2.2 Neumann Problem

Following a similar procedure for the analysis of the solutions obtained with the
Neumann boundary conditions as the one used in the Dirichlet problem, and compar-
ing the temperature of a system of one finite layer (Eq. 20) with the temperature of
the system for two finite layers (Eq. 21), the following results are obtained:

• If both finite layers are thermally thin, it can be shown that

ρcl = ρ1c1l1 + ρ2c2l2. (45)

Since the quantity, with ρcl�, with � being the common transversal area of the
layers, represents the heat capacity of the effective layer, Eq. 45 is just an expected
identity, due to the fact that this property is an extensive thermodynamic variable.
This result has also been obtained previously based on the parabolic model for con-
ventional thermal wave phenomena using the same boundary conditions [28]. In this
way, for thermally thin layers, under the framework of the parabolic or hyperbolic
models, and obeying Neumann boundary conditions, it is not possible to obtain a
useful formula for the effective thermal properties of a layered system. This result
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is in strong contrast with Eq. 33a for the effective thermal conductivity obtained
using the Dirichlet boundary conditions in the parabolic and hyperbolic models and
under steady-state boundary conditions. Given the characteristics of the boundary
conditions, in the limit when the frequency goes to zero, Neumann conditions imply
an asymptotically increasing deposition of thermal energy on the sample surface.
This is not consistent with steady-state conditions that guarantee the validity of the
equation for the effective thermal conductivity given by Eq. 33a. Therefore, the heat
capacity identity obtained in Eq. 45 for the Neumann boundary condition is only a
consistency equation that must be expected to be fulfilled.

• If both layers are thermally thick, for Neumann boundary conditions the same for-
mula found in the Dirichlet problem (Eq. 38) is obtained, where the effective thermal
relaxation time can still be determined using Eq. 39. This indicates that in an exper-
iment dedicated to measure the effective thermal properties, for high modulation
frequencies, it is equivalent to establishing a temperature or a heat flux boundary
condition as the excitation source at the surface x = 0 of the first layer.

4 Analysis and Discussion

In this section, the predictions of the obtained equations for the effective thermal prop-
erties are explored by comparing with conventional parabolic results. Typical values
for thermal diffusivities, the thickness, and thermal relaxation times reported in the
literature for crystal solids are used (see Table 1) [10]. Given that for thermally thin
layers, parabolic and hyperbolic approaches provide the same results, only the case in
which both layers are thermally thick is going to be analyzed.

Under the framework of the parabolic model, in Fig. 5a and b the effective thermal
diffusivity as a function of the modulation frequency is shown for the correspond-
ing values of the properties given in Table 1. In this case both composing layers are
thermally thick for high frequencies ( f � 6.5 × 105 Hz) in which Eq. 42 is valid.
Figure 5a shows that in the absence of an interface thermal resistance (R12 = 0), the
effective thermal diffusivity is always smaller than the larger thermal diffusivity of
the component layers, being a maximum when the first layer is a perfect thermal con-
ductor (ε2/ε1 = 0) and a minimum when the first layer is a perfect thermal insulator
(ε2/ε1 → ∞). Note that for extremely high frequencies, the curves of the effective
thermal diffusivity converge to the horizontal limit line (ε2/ε1 = 1), with an effective
thermal diffusivity= 0.628 cm2 · s−1.

Figure 5b shows that, under the framework of the parabolic approach, for fixed val-
ues of the thermal effusivities of the component layers, the effective thermal diffusivity
decreases remarkably when the interface thermal resistance increases, and becomes

Table 1 Thermal and geometrical properties of layers 1 and 2

α1 α2 ε1 ε2 τ1 τ2 l1 l2
(cm2 · s−1) (cm2 · s−1) (W · s1/2 · m−2 · K−1) (W · s1/2 · m−2 · K−1) (ηs) (ηs) (µm) (µm)

1 0.5 37137 16797 5 1 7 12
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Fig. 5 Effective thermal diffusivity predicted by the parabolic model for a system of thermally thick layers
as a function of the modulation frequency, taking (a) different values of the ratio of thermal effusivities
ε2/ε1 of the composing layers and R12 = 0, and (b) different values of the interface thermal resistance

R12: R(0)
12 = 0, R(1)

12 = 10−8 m2 · K · W−1, R(2)
12 = 10−7 m2 · K · W−1, and R(3)

12 = 10−6 m2 · K · W−1

independent of the modulation frequency and of the interface thermal resistance for
sufficiently high frequencies. These facts indicate that for frequencies not so high,
inside the interval of thermally thick layers, the interface thermal resistance plays an
important role in the process of heat conduction [26–28,35,36].

For the hyperbolic model, in Fig. 6a and b, the effective thermal diffusivity is shown
as a function of the modulation frequency, for different values of the ratio of thermal
effusivities ε2/ε1, in the absence of the interface thermal resistance (R12 = 0) and
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Fig. 6 Effective thermal diffusivity predicted by the hyperbolic model for a system of thermally thick
layers as a function of the modulation frequency, taking different values of the ratio of thermal effusivities
ε2/ε1 of the component layers and R12 = 0 : (a) for values of the thermal relaxation times given in Table 1
and (b) for thermal relaxation times: τ1 = 1.1 × 10−7 s and τ2 = 7.1 × 10−7 s, which are close to their
least upper bound given in Eq. 36

the corresponding values of the properties given in Table 1. Both component layers
are thermally thick for high frequencies such that f � 6.6 × 105 Hz for the case of
Fig. 6a, and f � 2.0 × 106 Hz, for Fig. 6b in which Eq. 39 is valid.

In Fig. 6a it is shown that for the thermal relaxation times of the component layers
given in Table 1, which are not close to their least upper bounds (see Eq. 41: τ 1 <

1.2 × 10−7 s and τ 2 < 7.2 × 10−7 s, the effective thermal diffusivity decreases when
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the ratio ε2/ε1 of thermal effusivities increases. This is a similar behavior to the one
presented for the parabolic model in Fig. 5a; however, in contrast to the prediction
of this model, in the hyperbolic approach the effective thermal diffusivity has a local
maximum value, and for sufficient high modulation frequencies, it tends to a fre-
quency-independent value, being larger for lower values of the ratio ε2/ε1 of thermal
effusivities. This is due to the fact that for too high frequencies the logarithmic term
in Eq. 38 does not vanish, but rather takes the form given in Eq. 44.

Figure 6b shows that for the thermal relaxation times of the component layers, close
to their least upper bounds (see Eq. 41: τ 1 < 1.2 × 10−7s and τ 2 < 7.2 × 10−7s, the
effective thermal diffusivity is almost independent of the modulation frequency and
takes different values for different values of the ratio ε2/ε1 of thermal effusivities. This
fact reveals that the changes presented by the effective thermal diffusivity in Fig. 6a
are attenuated when the thermal relaxation times of the component layers tend to their
corresponding least upper bounds. It can be shown that for thermal relaxation times
larger than their corresponding least upper bounds, the effective thermal diffusivity
can increase without limit. This indicates that the constraint given in Eq. 41 must be
taken into account in order to get physically reasonable results.

In Fig. 7a and b the effective thermal diffusivity as a function of the modulation
frequency is shown, for different values of the interface thermal resistance and the
corresponding values of the properties given in Table 1. In this case, both component
layers are thermally thick for frequencies such that f � 6.6×105 Hz. Figure 7a shows
that for fixed values of the thermal effusivities of the composing layers, the effective
thermal diffusivity takes lower values when the interface thermal resistance increases,
and becomes independent of the modulation frequency for sufficiently high frequen-
cies. However, in contrast to the predictions of the parabolic model, the hyperbolic
effective thermal diffusivity depends on the interface thermal resistance for too high
frequencies, such as established by Eq. 44. This last fact is shown in Fig. 7b, where
the parabolic effective thermal diffusivity (dashed lines) tends to a value independent
of both the modulation frequency and the interface thermal resistance, for sufficiently
high frequencies; while in the hyperbolic model, it becomes independent of the mod-
ulation frequency but continues depending on the interface thermal resistance.

After expressing θ(x = l) in Eq. 37 as a complex number in its polar form, it can
be shown that its amplitude is given by

A ( f ) = �
2

|1 + λ02 + R20λ0|
2

|1 + λ21 + R12λ2|e
−√

π f
(

χ1l1√
α1

+ χ2l2√
α2

)
, (46)

which indicates that the interface thermal resistance attenuates the amplitude as was
expected. In Fig. 8, the normalized amplitude is shown as a function of the modu-
lation frequency, for the corresponding properties of the two finite layers given in
Table 1, and taking ε0 = 1500 W · s1/2 · m−2 · K−1, τ0 = 3 × 10−8 s, and R20 =
5 × 10−8 m2 · K · W−1, for the semi-infinite layer. Calculations have been made con-
sidering two values of the interface thermal resistance R12: R(0)

12 = 0 and R(1)
12 =

10−7 m2 · K · W−1. In this case, both layers are thermally thick for frequencies such
that f � 6.6 × 105 Hz, where Eq. 46 is valid.
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Fig. 7 Effective thermal diffusivity predicted by the hyperbolic model for a system of thermally thick
layers as a function of the modulation frequency, for the thermal properties given in Table 1, and taking

different values of the interface thermal resistance R12: (a) R(0)
12 = 0, R(1)

12 = 10−8 m2 · K · W−1, R(2)
12 =

10−7 m2 · K · W−1, and R(3)
12 = 10−6 m2 · K · W−1 and (b) R(0)

12 = 0 and R(1)
12 = 10−7 m2 · K · W−1.

The predictions of the parabolic model are shown by dashed lines

Figure 8 shows that:

• When the interface thermal resistance (R12) between the finite layers is taken into

account
(

R(1)
12 = 10−7 m2 · K · W−1

)
, the normalized amplitude predicted by both

parabolic and hyperbolic models is reduced remarkably with respect to the one in
the absence of an interface thermal resistance (R(0)

12 = 0). This fact establishes that
for the whole interval of frequencies, in which both finite layers are thermally thick,
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Fig. 8 Normalized amplitude of the temperature as functions of the modulation frequency, for the Dirichlet
problem and the corresponding properties given in Table 1. The dashed lines correspond to the parabolic
model and the solid lines to the hyperbolic one for two values of the interface thermal resistance R12:

R(0)
12 = 0 and R(1)

12 = 10−7 m2 · K · W−1, with ε0 = 1500 W · s1/2 · m−2 · K−1, τ0 = 3 × 10−8 s, and

R20 = 5 × 10−8m2 · K · W−1

the interface thermal resistance is a determinant parameter in the process of heat
conduction and it has to be considered in practical applications of thin films.

• Inside the whole interval of frequencies for which both finite layers are thermally
thick, the normalized amplitude predicted by the hyperbolic model is larger than
the corresponding one predicted by the parabolic model. This could be expected,
given that the wave-like form of the hyperbolic heat conduction equation permits
an enhancement of the heat transfer as compared with the purely diffusive parabolic
behavior predicted by Fourier’s law.

• For higher frequencies
(
ωτ j � 1, j = 1, 2

)
in the range of thermally thick layers,

for the hyperbolic model, the amplitude becomes independent of the modulation
frequency while in the parabolic model, it tends to zero. This indicates that for this
range of frequencies the hyperbolic thermal waves can travel larger distances than
those predicted by the parabolic model and that the thermal waves established by
the hyperbolic model at the fixed position are always present, no matter how high
is the modulation frequency. This could be useful in the evaluation of the role of
hyperbolic effects in systems where abnormally high thermal properties have been
reported, in contradiction with the values predicted by the traditional mean field
theories based on Fourier’s law [5,22].

• It is important to note that when the thermal relaxation times are changed, restricted
to values allowed by Eq. 36, it is straightforward to show that the difference between
the results obtained from the parabolic and hyperbolic models decreases when the
thermal relaxation times of each layer move away from their corresponding least
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upper bounds and become negligible when the thermal relaxation times of each
layer tend to zero.

5 Effective Thermal Conductivity and Thermal Diffusivity of N Finite Layers

The generalization of Eqs. 33a and 38, for the effective thermal conductivity and ther-
mal diffusivity of two finite layers can be easily performed for a system of N ≥ 2 finite
layers. Solving the Dirichlet problem (Eq. 12) with the boundary conditions given in
Eqs. 11a and 11b, it is only necessary to obtain the spatial part θ(x) of the oscillatory
component of the temperature for x ≥ l = l1 + l2 +· · ·+ lN , where ln is the thickness
of the layer n = 1, 2, ..., N . Following a similar procedure as the one presented in
Sect. 3.2.1, the following results are obtained:

• For thermally thin layers (χ−1
n ln/μn � 1, n = 1, 2, ..., N ),

l

k
=

N∑
n=1

ln
kn

+
N−1∑
n=1

Rn,n+1, (47)

and the thermal relaxation time of the effective layer is given by the weighted
average

τ =
∑N

n=1 τn
ln
kn∑N

n=1
ln
kn

+∑N−1
n=1 Rn,n+1

. (48)

• For thermally thick layers (χnln/μn � 1, n = 1, 2, ..., N ),

χ
1√
α

=
N∑

n=1

χn
ln√
αn

+
√

2

ω
ln

[
1

2N−1

N−1∏
n−1

∣∣1 + λn+1,n + Rn,n+1λn+1
∣∣
]

, (49)

whose parabolic limit is

l√
α

=
N∑

n=1

ln√
α

+
√

2

ω
ln

⎡
⎣ 1

2N−1

N−1∏
n−1

√(
1+εn+1

εn
+Rn,n+1εn+1

√
π f

)2

+ (
Rn,n+1εn+1

)2
π f

⎤
⎦ .

(50)

The presented results for the effective thermal properties can be used as the basis in the
development of more general formulas for the analysis of thermal properties, under
the framework of generalized models of heat conduction such as the dual-phase lag
model [8,14,15,45–48] when the interface thermal resistance between adjacent layers
is considered.
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6 Conclusions

Thermal wave transport in a layered system was analyzed using the hyperbolic model
of heat conduction and considering a modulated thermal excitation at the surface with
Dirichlet and Neumann boundary conditions. For a single semi-infinite layer, useful
and analytical formulas to determine its thermal relaxation time as well as additional
thermal properties have been found. For a system of two finite layers in thermal con-
tact with a semi-infinite one, under the Dirichlet boundary condition, formulas for
the effective thermal conductivity and the effective thermal relaxation time have been
obtained, when both component layers are thermally thin. In contrast in the thermally
thick regime, an analytical expression for both Dirichlet and Neumann conditions has
been obtained for the effective thermal diffusivity of the two finite layers in terms of
their thermal properties and their interface thermal resistance. It has been demonstrated
that our formulas reduce to known parabolic results when the thermal relaxation times
of all layers are zero and can be used in the thermal characterization of the component
layers. In addition, it has been shown that the interface thermal resistance may reduce
remarkably the amplitude of the thermal signal in the process of heat conduction and,
therefore, it has to be taken into account for most of the theoretical approaches and
experimental conditions. In this way, our results can be used to interpret and analyze
experimental results and theoretical models of complex layered systems establish-
ing the basis for the development of more general formulas under the framework of
generalized models.
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